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Abstract
Durability of concrete is in a great extent determined by the crack widths that are formed in the 
structure and that allow water to infiltrate in the concrete so that corrosion of the reinforcement 
bars can occur.  This paper concerns the calculation of crack widths in beams containing 
longitudinal reinforcement and steel fibres.  Two calculation methods are explained.  The first is 
the calculation method that is proposed by Rilem TC162-TDF.  This method is a semi-empirical 
method, based on the approach followed by Eurocode 2 for normal concrete.  The second method 
is a more fundamental approach that considers the interaction between the concrete and the 
reinforcement bars.  Both calculation methods have been compared with experimental results of 19 
full-scale beams.  The investigated parameters were the reinforcement ratio, the fibre content, the 
fibre type and the shear span to depth ratio.  The comparison between experimental and theoretical 
results shows that for both models a relatively good prediction can be found of the average crack 
width. 

1. Introduction 

The determination of cracks in concrete has always been a topic of interest for investigation by 
many scientists.  In general it is assumed that the durability of the structure is assured when the 
crack widths are limited to 0.3 mm.  One of the often-used approaches to limit the crack widths is 
the use of steel fibre reinforced concrete (SFRC).  Steel fibre concrete is generally known to 
reduce crack widths because of its post-cracking tensile strength. 

At the Department of Civil Engineering of the Catholic University of Leuven, Belgium, a test 
program has been executed on 19 full-scale SFRC beams containing longitudinal reinforcement.  
All beams have been tested in four-point bending.  The tests were performed in different load steps 
until failure of the beam.  The load steps were chosen so that the beams failed after 10 to 15 steps.  
At each load step the crack widths and spacings were measured.  The results of the test program 
illustrate the strong beneficial effect of steel fibres on the crack width as well as on the crack 
spacing.  The addition of fibres to the concrete can lead to a reduction of the crack width of up to 
40%. 

The crack widths of the beams of the test program have also been calculated by means of the 
calculation method proposed by Rilem TC162-TDF [1] as well as with a newly developed physical 
cracking model for reinforced SFRC beams.  The model takes into account the bond between the 
reinforcement bars and the SFRC matrix as well as the influence of the steel fibres.  A comparison 



RILEM TC 162-TDF Workshop, Bochum, Germany, 2003 120 

of the calculated results and the experimental results shows that there is a relatively good 
correlation between the two. 

2. Calculation methods 

2.1 Calculation method proposed by Rilem TC162-TDF [1]. 
In the most recent recommendation of Rilem TC162-TDF the calculation of crack widths is done 
with a semi-empirical method, which is based on the method used in Eurocode 2 for the 
calculation of crack widths in concrete without steel fibres.  The mean crack width wm may be 
calculated by: 

rmsmm sw  (1) 

with : srm = the average final crack spacing (mm); 
sm = the mean steel strain allowed under the relevant combination of loads for the 

effects of tension stiffening, shrinkage, etc. 
The average final crack spacing for members subjected principally to flexure or normal force can 
be calculated from the equation: 
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with : 1
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b = the bar size in mm; 
 k1 = a coefficient which takes account of the bond properties of the bars; 
 k2 = a coefficient which takes account of the form of the strain distribution; 

r = the effective reinforcement ratio As/Ac,eff where As is the area of reinforcement 
contained within the effective tension area Ac,eff;

 Lf = the fibre length in mm; 
f = the fibre diameter in mm. 

The mean steel strain sm is obtained from the relation: 
2
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with : s = the stress in the tensile reinforcement calculated on the basis of a cracked section 
as shown in a (MPa); 

sr = the stress in the tensile reinforcement calculated on the basis of a cracked section 
under loading conditions causing first cracking as presented in Figure 1a (MPa); 

1 = a coefficient which takes account of the bond properties of the bar [2]; 
2 = a coefficient which takes account of the duration of the load or of repeated loading 

[2]; 
 Es = Young’s modulus for steel reinforcement (MPa). 
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Figure 1: Assumed stress distribution for plain concrete (a) and SFRC (b) beam section. 

In the calculation the fibres have an implicit influence on sm, because the fibres reduce the steel 
stresses s and sr.  The stress f  (b) is taken equal to 0.45 fR,1 [1], where fR,1 is determined by 
means of a bending test on a notched prism according to the new RILEM proposal [1].  The 
beneficial influence of the fibres on the mean final crack spacing is found in the last factor of 
equation (2). 

2.2 Alternative calculation method 
The Rilem proposal is a rather easy method that is very close to the approach in Eurocode 2 [2].  
However, the method is an empirical method.  In search for a more fundamental calculation 
method, the authors have developed a new physical model.  In Figure 2, a fragment of a beam is 
shown.  Section 2 is a cracked section, while section 1 is a section that is just about to crack.  The 
length L of the fragment is the minimum crack spacing for a given moment M.  The maximum 
crack spacing is equal to 2L.  It is concluded from this that the average crack spacing is equal to 
1.5 · L.  The general calculation procedure consists of two steps.  In a first step the length L in 
Figure 2 is determined, assuming that the tensile stress in section 1 is equal to 1.2 times the tensile 
strength fctm and that the tensile stength in section 2 is equal to 0.8 times fctm.  The factors 1.2 and 
0.8 are introduced to take the scatter on the tensile strength of the concrete into account.  In the 
second step, the length of the beam fragment is fixed at 0.75 · L (half of the average crack spacing) 
and now the tensile stress in section 1 is variable. 
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Figure 2: Beam part between a cracked section and a section that has just reached the point of 
cracking. 

It is assumed that the influence of the fibres in section 2 can be simulated wit a drop-constant 
stress-strain relation.  The drop-constant relation is considered to be a special case of the two-level 
model [4].  The stress f is calculated as 0.39  fR,1.  The stress-strain relation for the post-cracking 
behaviour of SFRC implies that there is a full co-operation between the SFRC and the 
reinforcement bar.  The stress-strain relation was determined assuming a perfectly linear strain 
distribution over the entire cross section.  In reality however, this is not the case.  In a cracked 
section and in the immediate neighbourhood, the reinforcement bars slip in the concrete matrix.  
The slip  is maximal at the place of cracking and zero at a place that is far enough away from the 
crack.  In a section where a new crack is formed, the slip is also assumed to be zero.  This is 
because on both sides of the future crack the slip is opposite.  In this calculation model the slip is 
assumed to be zero in section 1.  Section 1 is an uncracked section.   
For the calculation of the crack spacing it is assumed that the position of the neutral axis can be 
calculated exactly in section 1 and section 2 by using static equilibria of axial forces and bending 
moments in these sections.  For all sections that lie in between section 1 and 2, the position of the 
neutral axis is unknown.  It is assumed here that position of the neutral axis is constant over a 
small interval and can be calculated as follows: 

x
2

12
1x

zz
zz  (4) 
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where: zx, z1 and z2 are the positions of the neutral axis in section x, section 1 and section 2, 
respectively; 2 is the slip in section 2 and x is the slip in a section x.  To start the calculations a 
value of 2 must be assumed and afterwards, if this slip was not correct, an iteration step can be 
performed. 

In step one the unknown parameters are: -) the length L; 
     -) the steel strain in section 1: s1;
     -) the steel strain in section 2: s2;
     -) the compressive strain in section 1: c1;
     -) the compressive strain in section 2: c2;
     -) the concrete tensile strain in section 2: t2;
     -) the position of the neutral axis: y and z; 
     -) the slip  as function of x. 

For the calculation of the length L and the slip , a differential equation must be solved.  All other 
unknown parameters can be solved by simple static equilibrium of forces and moments.  
According to the hypothesis of Bernouilli, the following relations can be written: 

y
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Requiring static equilibrium of normal forces for section 1 results in: 
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Requiring static equilibrium of normal forces in section 2 results in: 
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Requiring static equilibrium of moments for section 1 results in: 
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Requiring static equilibrium of moments for section 2 results in: 
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From equations (8) and (10) the strain t2 and the position of the neutral axis y can be found.  
Following this, from equations (7) and (9) the strains s1 and c1 can be found.  This results in the 
complete knowledge of stresses and strains in sections 1 and 2.  The only remaining unknown 
parameters are the length L and the slip  as a function of x.  If a static equilibrium of normal 
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forces and moments is written for an arbitrary section at place x, equations (11) and (12) are 
found: 
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Extracting c from equation (11) gives: 
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Substituting equation (13) into equation (12) gives: 
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From equation (14), t can be written as a function of s:
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This leaves only the strain s to be determined.  The position of the neutral axis (y and z) in any 
section is assumed to be the same as in section 2.  Since the steel rebars are slipping relative to the 
surrounding concrete, the steel strain is composed of two parts.  The first part is the strain of the 
surrounding concrete, while the second part is the strain due to the slipping of the rebars: 
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Equation (15) is substituted in equation (16): 
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If the derivative of equation (17) is calculated, then equation (18) is found.  It is assumed here that 
the moment M is independent of the position x along the longitudinal axis, i.e. the bending 
moment is constant in this zone of the beam. 
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To solve this differential equation a relation must be found between the slip  and the strain s,
both functions of x.  The horizontal equilibrium of the steel reinforcement between the place x and 
the place x + dx results in (Figure 2): 

sAsE
x
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Substituting expression (19) in equation (18) results in: 
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Now only a relation has to be assumed describing (x) as a function of (x).  This chosen 
relation is equation (21). 

e1max  (21) 

The determination of max is explained in [4, 5, 6].  Recent research at the department of Civil 
Engineering of the Catholic University of Leuven has shown that  and  can be determined from 
pullout tests.   as well as  are dependent on the concrete cover.  The addition of steel fibers has 
only an influence on .  The reason is that  is to a great extent determined by the chemical bond 
between reinforcement bar and surrounding concrete.  If fibers are added to the concrete this has a 
negative impact on the degree of compaction.  For the concrete cover used in this test program it 
was found that  can be taken equal to 8, while  can be taken equal to 0.782 for plain concrete 
and equal to 0.89 for SFRC with 60 kg/m3 fibers of type RC 65/60 BN.  For other fiber dosages an 
interpollation is used.  Substituting equation (21) in equation (20) gives: 

xeµ1A
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To solve equation (22), a few new parameters are introduced: 
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Equation (22) can now be written as: 
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If this last expression is integrated, equation (25) is obtained: 
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For the determination of the integration constant C1 the following boundary conditions have been 
taken into account: 
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In case the beam is loaded with the cracing moment, which we assume for the calculation of the 
crack spacing, the second boundary condition is equal to 0.  This results in: 
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Equation (25) can now be used to determine the course of the slip  as function of x: 
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Integrating expression (28) leads to: 
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The integration constant C2 in equation (29) is determined with the following boundary condition: 

00
0

0x  (30) 

Equation (29) cannot be solved analytically.  Therefore a numerical procedure has been worked 
out.  At first the integration constant C2 is determined.  This constant is linked to the starting value 
of the integration interval.  If the integration is started at the point 0, then C2 can be found by 
substituting  = 0 in F (the function after the integration sign).  Furthermore the determination of 
the slip  as function of x is done by means of an inverse procedure.  First the function F is 
determined for a list of values of , starting with zero.  After that a numerical integration can be 
performed and point after point for each value of , a corresponding x can be found.  Once the 
course of  or  is known as a function of x, the length L can be calculated.  This is done by 
considering the difference in force in the steel reinforcement.  This difference must be equal to the 
total shear force between the reinforcement bar and the concrete. 

L

0
s1s2sss dxxEAF  (31) 

Following the above explained approach the length L can be determined for a series of different 
moments, each moment resulting in a different strain distribution in section 1 and 2 and also a 
different Fs and therefore a different L.  The crack spacing is assumed to be equal to 1.5  L [7]. 
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Figure 3: Beam part between a cracked section and a section that lies in between two cracks. 

In the second step of the calculation, the crack widths are calculated.  Therefore the length of the 
model is now fixed at half the crack spacing or 0.75L.  In section 2 the boundary conditions 
remain the same, but in section 1, the strain distribution is now different.  When the beam is loaded 
with bending moments that are larger than the cracking moment, the position of the neutral axis 
shifts upwards.  It is therefore assumed here that in step two, where the crack widths are calculated 
for a certain moment, the position of the neutral axis is fixed and equal to the positionof the neutral 
axis in the cracked section (Fig. 3).  Furthermore, since the length of the model is no longer L, the 
stress in the bottom fibre of section 1 is now lower than the tensile strength.  This means that the 
strain distribution in section 1 is unknown.  To have a system that is in a state of static equilibrium 
the strain s1 must be determined so that at a distance x = 0.75L the strain is equal to s2.  First the 
steel stress s is calculated as function of x.  This can be done by the following steps: 

1) From equation (25) and (26) the following relation can be derived: 
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2) If equation (15) is filled into equation (32), an expression is found for the strain s as 
function of x: 
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Using equation (33), the correct value of s1 can be found.  This is done with an iterative 
procedure.  The strain s1 is chosen.  For this chosen value of s1 the value of t1 is determined by 
requiring static equilibrium in section 1.  With this new strain distribution in section 1, equation 
(29) can be solved numerically.  If this equation is solved, the value of  can be determined that 
corresponds to x = 0.75L.  Substituting this value in equation (33), the new strain s2,new is found.  
This new strain s2,new must be equal to the strain s2,old that was determined from equations (8) and 
(10).  The procedure is repeated, each time for a new s1, until the demand ( s2,new = s2,old) is 
satisfied.  Once this has been done the average crack width is found as twice the value of the slip 
at a distance x = 0.75 L. 

3. Experimental program 

At the Department of Civil Engineering of the Catholic University of Leuven (Belgium) a test 
program was executed which involved four-point bending tests on 19 full-scale beams.  All beams 
had a depth of 300 mm and a width of 200 mm.  The span was always equal to 2300 mm.  The 
investigated parameters for the 19 beams were the reinforcement ratio, the fibre dosage and the 
fibre type.  The concrete cover on the longitudinal reinforcement is equal to 30 mm.  Details for all 
beams can be found in Table 1. 
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Figure 4: Test set-up for all beams. 

A picture of the test set-up is shown in Figure 4.  All beams were tested under load control.  The 
size of the load steps was so that the beam failed after 10 to 15 load step.  After each load step the 
deflection was measured as well as the crack widths on both sides of the beam.  The crack widths 
were measured at ± 1 cm above the bottom of the beam, only in the zone of constant moment 
(between the loading points).  The measurement of the crack widths was done with a small, 
calibrated microscope.  The smallest scale division in the microscope corresponds to 0.02 mm.  
Furthermore, due to the freaky shapes of the cracks it was sometimes difficult to decide how large 
the crack width was.  Finally it must be said that a crack width can only be measured after the 
crack has been detected.  The smallest crack widths that could be detected had already a crack 
width of 0.02 to 0.03 mm.  This implies that the cracks that have a crack width smaller than 0.02 to 
0.03 mm are not detected and not taken into account in the calculation of the average crack width.  
The result is that the average experimentally observed crack width is a little overestimated.  The 
effect of this becomes more important for beams with a high reinforcement ratio and a high fibre 
dosage, since for these beams the number of very small cracks that remain undetected is higher.  
For all these reasons the authors think that, although the measurements were taken with great care, 
there is a high degree of uncertainty regarding the test results. 
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Table 1: Test parameters. 
Beam Fibre dosage Fibre type  Span Reinforcement 

 kg/m3  mm # x  (mm) 
1 0 - 1000 3 20
2 20 RC 65/60 BN (*) 1000 3 20
3 60 RC 65/60 BN 1000 3 20
4 0 - 1000 3 16
5 20 RC 65/60 BN 1000 3 16
6 60 RC 65/60 BN 1000 3 16
7 0 - 1000 3 16
8 20 RL 45/50 BN 1000 3 16
9 60 RL 45/50 BN 1000 3 16

10 0 - 1000 3 20
11 20 RL 45/50 BN 1000 3 20
12 60 RL 45/50 BN 1000 3 20
13 40 RC 65/60 BN 1000 3 16
14 40 RC 80/35 BN 1000 3 16
15 60 RC 80/35 BN 1000 3 16
16 40 RC 65/60 BN 1000 3 20
17 0 - 1500 3 20
18 20 RC 65/60 BN 1500 3 20
19 60 RC 65/60 BN 1500 3 20

(*):R : hooked end fibre - C : fibres are glued in bundles - 65 : aspect ratio of fibre 
(=length/diameter = L/ ) - 60 : length of fibre (= L in mm) - B : no coating - N : low carbon, i.e. 
minimum yield strength of 1100 MPa. 

Together with each beam 10 cubes were cast to measure the mean cube compressive strength 
fcm,cube as well as 8 Rilem 3-point bending specimens to measure the post-cracking behaviour [8].  
The mean cylinder compressive strength fcm is taken equal to 0.8 · fcm,cube.  The Young’s modulus 
of steel is taken equal to 200000 MPa, while the Youngs modulus of concrete is calculated with 
the formula provided in Eurocode 2 [2]: 

3
cc f9500E . (35) 

The tensile strength fctm is calculated from the flexural strength by applying the size factor 
proposed by Rilem TC162-TDF [1]: 

1475
d1600ff fl,ctmctm  (36) 

The material properties for all beams are shown in Table 2. 
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Table 2: Material properties for all beams 
Beam fcm fctm fR,1 fR,4

 N/mm2 N/mm2 N/mm2 N/mm2

1 40.2 3.6 0 0 
2 40.0 3.5 1.6 1.1 
3 38.7 3.9 4.2 3.5 
4 40.2 3.6 0 0 
5 40.0 3.5 1.6 1.1 
6 38.7 3.9 4.2 3.5 
7 29.8 3.4 0 0 
8 26.8 3.2 1.1 0.8 
9 27.5 2.8 2.7 2.1 

10 29.8 3.4 0 0 
11 26.8 3.2 1.1 0.8 
12 27.5 2.8 2.7 2.1 
13 48.0 4.7 4.1 3.7 
14 46.0 4.5 4.9 2.9 
15 50.6 5.0 6.1 3.8 
16 47.4 4.4 4.0 3.5 
17 40.0 3.5 0 0 
18 41.2 4.2 2.3 1.5 
19 40.3 4.6 5.9 4.7 

The experimental results as well as the theoretical results calculated with the new Rilem method 
and with the newly developed physical model are shown in Figure 5 until Figure 23. 

Figure 5: Experimental and theoretical crack widths for beam 1 
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Figure 6: Experimental and theoretical crack widths for beam 2 
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Figure 7: Experimental and theoretical crack widths for beam 3 
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Figure 8: Experimental and theoretical crack widths for beam 4 
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Figure 9: Experimental and theoretical crack widths for beam 5 
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Figure 10: Experimental and theoretical crack widths for beam 6 
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Figure 11: Experimental and theoretical crack widths for beam 7 
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Figure 12: Experimental and theoretical crack widths for beam 8 
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Figure 13: Experimental and theoretical crack widths for beam 9 
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Figure 14: Experimental and theoretical crack widths for beam 10 
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Figure 15: Experimental and theoretical crack widths for beam 11 
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Figure 16: Experimental and theoretical crack widths for beam 12 

60 kg/m3 RL 45/50 BN, 3  20
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Figure 17: Experimental and theoretical crack widths for beam 13 

40 kg/m3 RC 65/60 BN, 3  16
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Figure 18: Experimental and theoretical crack widths for beam 14 

40 kg/m3 RC 80/35 BN, 3  16
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Figure 19: Experimental and theoretical crack widths for beam 15 

60 kg/m3 RC 80/35 BN, 3  16
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Figure 20: Experimental and theoretical crack widths for beam 16 

40 kg/m3 RC 65/60 BN, 3  20
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Figure 21: Experimental and theoretical crack widths for beam 17 

No steel fibres, 3  20
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Figure 22: Experimental and theoretical crack widths for beam 18 

20 kg/m3 RC 65/60 BN, 3  20
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Figure 23: Experimental and theoretical crack widths for beam 19 

60 kg/m3 RC 65/60 BN, 3  20

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100
Bending moment (kNm)

C
ra

ck
 w

id
th

 (m
m

)

Experimental crack widths Rilem TC162-TDF
Alternative calculation method

4. Conclusions 

A large test program has been executed on 19 full-scale beams.  The investigated parameters are 
the reinforcement ratio, the fibre dosage, the fibre type and the concrete strength.  It can be 
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concluded from the test results that steel fibres have a strong beneficial effect on crack widths.  For 
the same amount of longitudinal reinforcement, the addition of 60 kg/m3 of steel fibres results 
clearly in a reduction of the crack widths.  The benefit of the steel fibres is more obvious for the 
beams with 3  16 than for the beams with 3  20.  This is logical since the portion of the fibres in 
the total tensile force of the beam is higher in this case. 

Two calculation methods have been investigated.  The first calculation method is a semi-empirical 
method, which is based on the calculation method of Eurocode 2.  This first method is also the 
new proposal of the Rilem committee TC162-TDF.  The second method is quite complicated and 
based on a physical model.  The physical model takes into account the bond between the 
reinforcement bars and the surrounding concrete as well as the influence of the post-cracking 
tensile strength on the steel strain in a cracked section. 

In comparing the calculated crack widths with the experimentally determined crack widths it 
becomes clear that, taking into account different assumptions as well as the uncertainty on the 
experimental results, the newly proposed alternative calculation method provides good predictions 
for all beams.  Also the semi-empirical model provides accurate predictions of the crack widths.  
Since the semi-empirical method is much easier to use and the calculated crack widths are good 
predictions of the experimental crack widths, this method is by far the most suitable to be used as a 
standard method for crack width calculation.  The newly proposed alternative calculation method 
on the other hand is rather complicated to use, but in return, it offers a very good insight in the 
mechanisms that determine the formation of cracks.  With the alternative calculation method it 
becomes possible not only to calculate the crack width, but also the slip at any place between the 
reinforcement and the surrounding concrete as well as the course of the steel strain along the 
reinforcement. 
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6. List of symbols 

1 A coefficient which takes account of the bond properties of 
the bar 

-

2 A coefficient which takes account of the duration of the load 
or of repeated loading 

-

Slip of the reinforcement bar relative to the surrounding 
concrete 

mm

Fs Difference tensile force in the reinforcement between 
section 1 and section 2. 

N

c Compression strain in the concrete -
c1 Compression strain in the concrete in section 1 -
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c2 Compression strain in the concrete in section 2 - 
ct Tensile strain in the concrete at the moment of cracking - 
s Steel strain -
s1 Steel strain in section 1 -
s2 Steel strain in section 2 - 
t Tensile strain in the concrete -
t1 Tensile strain in the concrete in section 1 -
t2 Tensile strain in the concrete in section 2 - 
sm The mean steel strain - 
b Bar diameter mm 
f Fibre diameter mm 

Bond parameter 1/mm 
Bond parameter - 

r Effective reinforcement ratio - 
c The maximum stress in the concrete compression zone N/mm2

s The stress in the tensile reinforcement calculated on the 
basis of a cracked section 

N/mm2

sr The stress in the tensile reinforcement calculated on the 
basis of a cracked section under loading conditions causing 
first cracking 

N/mm2

Bond stress between the reinforcement bar and the 
surrounding concrete 

N/mm2

   
As Steel section mm2

Ac,eff Effective tension area mm2

b Width of the beam mm 
d Effective depth of the beam mm 
h Depth of the beam mm 
Ec Youngs modulus for concrete N/mm2

Es Youngs modulus for steel N/mm2

fctm Tensile strength of the concrete N/mm2

feq,2 Equivalent flexural tensile strength determined at a 
deflection of 0.65 mm 

N/mm2

feq,3 Equivalent flexural tensile strength determined at a 
deflection of 2.65 mm 

N/mm2

fR,1 Residual flexural tensile strength determined at a CMOD of 
0.5 mm 

N/mm2

fR,4 Residual flexural tensile strength determined at a CMOD of 
3.5 mm 

N/mm2

k1 A coefficient which takes account of the bond properties of 
the bars 

-

k2 A coefficient which takes account of the form of the strain 
distribution 

-

L Maximum distance between a cracked section and a section 
that is just about to crack 

mm

Lf Fibre length mm 
M Bending moment kNm 
srm Average final crack spacing mm 
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wm Average crack width mm 
x Distance to a section that is just about to crack mm 
y Height of the tensile zone mm 
z Height of the compression zone mm 

7. References 

[1] L. Vandewalle, Test and design methods of steel fibre reinforced concrete – Results of the Rilem 
Committee, Proceedings of the 2 Leipziger Fachtagung “Innovationen im Bauwesen”: Faserbeton, 
28-29 November 2002. 

[2] ENV 1992-1-1: 1991, Eurocode 2 : Design of concrete structures - Part 1 : General rules and rules 
for buildings, 1991. 

[3] D. Dupont and L. Vandewalle, Characterisation of steel fibre concrete with a  relation, 
Proceedings of the 4th international Ph.D. symposium in Civil Engineering, 19-21 September 2002, 
pp 108-114. 

[4] L. Vandewalle, Hechting tussen wapening met verbeterde hechting en beton bij gewone en 
cryogene omstandigheden (in dutch), doctoral thesis, Catholic University of Leuven (Belgium), 
1988.

[5] D. Dupont and L. Vandewalle, Influence of steel fibres in local bond behaviour, Proceedings of the 
international symposium “Bond in Concrete”, Budapest, November 20-22, 2002. 

[6] F. De Bonte, Hechtsterkte bij Staalvezelbeton (in dutch), Masters thesis, Catholic University of 
Leuven (Belgium), 2000. 

[7] K. H. Tan, P. Paramasivam, K. C. Tan, Cracking Characteristics of Reinforced steel fibre concrete 
beams under short- and long-term loadings, Advanced cement based materials, Vol. 2, 1995, 
pp.127-137.

[8] L. Vandewalle et al. (2000): “Recommendations of Rilem TC162-TDF : Test and design methods 
for steel fibre reinforced concrete : bending test”, Materials and Structures, 2000, Vol.33, pp.3-5. 


