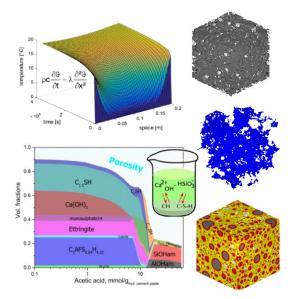
Official RILEM EAC and TUDa Course


Computational Methods for Building Physics and Construction Materials

Hybrid!! April 7 – 11, 2025

Teachers: Prof. Dr. ir. E.A.B. Koenders, Dr. chem.-Ing. N. Ukrainczyk M.Sc. M. Löher, Dr. T. Chidiac, Prof. Dr.-Ing. Th. Matschei (RWTH)

Course description:

The course contains detailed lecturing on computational methods covering differential equations, numerical solution strategies, explicit and implicit discretization, Method of Lines, boundary conditions and implementation of physical processes that frequently occur in construction materials. Emphasis will be on the Finite Difference Method applied to transport processes in porous construction materials, such as concrete and insulation materials, and on hydration modelling. Typical problems that will be addressed are thermal, moisture and reactive transport modelling, multi-layer systems, coupled moisture - heat cement particle structure, hydration svstems. kinetics and thermodynamic modelling, and an introduction to high performance computing. The course provides a full solution strategy, starting from a physical problem to schematization and discretization, to boundary conditions evaluation, implementation and to a computational solution.



Key topics:

- Steady state problems discretization and implementation in Excel
- Transient problems explicit & implicit heat and moisture flow implementation in Octave
- Coupled and multi-layer systems for heat and moisture flow, discretization and implementation in Octave
- Particle structure formation and hydration kinetics of cementitious systems
- Thermodynamic modelling of cement hydration with GEM-Selektor
- High Performance Computing for large multi-core systems
- Demonstrations and exercises with examples for all topics

Course program:

Г		07. Apr 25	08. Apr 25	09. Apr 25	10. Apr 25	11. Apr 25	
CMBPCM	CMBPCM Time Mono		Tuesday	Wednesday	Thursday	Friday	
		Basics + Explicit	Implicit - Matrix	Advanced	Cement Hydration	High Performance Computing	
	8.45 - 9.00	Welcome - introduction RILEM and UNITE!					
	9.00 - 10.15	V1 Introduction schematization and discretization	V5 Transient implicit implementation in Octave	V9 Advanced time integrators and coupled systems	V13 Thermodynamic (TD) cement hydration modelling	V17 High Performance Computing Implementation	
Lectures	10.15 - 10.45	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break	
	10.45 - 12.30	V2 Transient discretization problem, explicit method in Excel	V6 Implementation of boundary conditions and multi-layer systems in Octave	V10 Transient systems with Method Of Lines (MOL)	V14 Particle structure and cement hydration kinetics	V18 Example: Chloride Diffusion in MPI / CUDA	
	12.30 - 13.30	Lunch break	Lunch break	Lunch break	Lunch break	Lunch break	
Demo	13.30 - 15.00	V3 Introduction to Octave and explicit transient implementations	V7 Example: Implicit Transient Implementations	V11 Example: Coupled Systems, MOL	V15 Example: cement hydration TD and Hymostruc	V19 Presentations / Feedback	
	15.00 - 15.30	Coffee break	Coffee break	Coffee break	Coffee break	Coffee break	
Exercise	15:30 - 17.30	V4 Programming Chloride diffusion (explicit)	V8 Programming Heat diffusion (implicit)	V12 Programming Advanced Time integrators, Heat- diffusion (MOL)	V16 Programming: Particle cement hydration (Octave)	V20 Questions / Exam Preparations	

INSTITUT FÜR WERKSTOFFE IM BAUWESEN

unite!

Objective:

Main objective of the course is to train MSc, PhD and Postdoc students, who are beginners or have no modelling experience, on how to solve partial differential equations and to become familiar with numerical solution strategies for common physical/chemical problems in construction materials. After finishing this course, students will be able to use computational methods for their own research and build their own basic computational models.

Venue:

The course will be provided in a hybrid format, where the actual course will take place at the TU Darmstadt and the online streaming will be offered via the platform ZOOM. A ZOOM-link will be sent shortly before every course day.

Registration fee:

zoom

Participant situation	Whole week [€]		Per day [€]	
· · · · · · · · · · · · · · · · · · ·	Online	TU Darmstadt	Online	TU Darmstadt
MSc students from TU Darmstadt, UNITE! or SPP 2436	free	free	free	free
MSc students from other Universities	75	150	30	50
PhD students and/or Postdocs	300	500	100	150
Professors or representatives from the industry	600	1000	200	300

Note: The fees already include RILEM discount.

The fee includes online course attendance, basic course materials like a PDF-copy of all PPTs, Octave, programming codes used during lectures and exercises, useful links to freeware, etc. Existing recordings of the full course will also made available for the participants via an online streaming platform until three weeks after the course.

Exam:

Non TU Darmstadt students may also opt for doing the exam. After succesful passing, a formal document confirming the 6 ECTS will be provided by TU Darmstadt. This document can be used for your graduate school.

CPD Credits:

Continuing Professional Development Credits (CPD credits) will be provided by the Institute of Concrete Technology based on the hours of participation per day.

Enrollment:

TU Darmstadt MSc students can enroll via the TU Darmstadt TUCaN system. Other MSc-, PhD-students, PostDocs, Professors, UNITE! partners, SPP 2436 or industry representatives, can enroll through the following platform:

Enrollment website: Click here

Contact information:

Institute of Construction and Building Materials Ms. A. Cevik E-Mail: <u>info@wib.tu-darmstadt.de</u> Tel: +49-6151-16-22210

Summary	Technische Universität Darmstadt Institute of Construction and Building Materials		
Course	Campus Lichtwiese, TU Darmstadt	Unite! University Network for Innovation, Technology and Engineering	
Information	Address: Franziska-Braun-Straße 3, 64287 Darmstadt		
Exam / ECTS:	An exam will be provided / 6 ECTS		
Room:	Will be announced soon	SPP 2436 NET-ZERO CONCRETE	riiem
Language:	English		